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Abstract

Urban signal obstructions and technical challenges
like interference and environmental factors often lead
to inaccuracies in smartphone GNSS positioning. Cur-
rent accuracy of 3-5 meters [1] falls short for lane-
specific navigation, resulting in missed exits and inaccu-
rate arrival times. This project aims to enhance smart-
phone GNSS accuracy to decimeter or 1-meter levels
using Kalman Filter (KF) [2] and Kalman Smoothing
(KS) [3]. We compare these methods with a Weighted
Linear Regression approach [4]. Results show signifi-
cant improvements in positioning accuracy, with KS out-
performing KF, and KF surpassing Weighted Linear Re-
gression, making them ideal for precise positioning in
complex urban environments.

1. Introduction

Global Navigation Satellite Systems (GNSS) [5] have
evolved into a multi-system, globally integrated frame-
work, becoming essential for modern navigation and
positioning. GNSS applications range from everyday
use in in-car navigation to specialized fields like urban
planning, precision agriculture, disaster relief, and au-
tonomous driving. However, high-precision position-
ing faces challenges such as climate changes, multipath
effects, complex environments, and signal interference.
This paper focuses on enhancing smartphone GNSS po-
sitioning, which currently achieves only 3-5 meters ac-
curacy. While useful, this can cause ”position jumps,”
resulting in unstable and unreliable experiences in many
applications. [1]

To enhance GNSS positioning accuracy, we employ
robust estimation methods, focusing on the Kalman Fil-
ter and its variants. Our aim is to achieve smartphone
GNSS accuracy at the decimeter or even centimeter
level, thereby improving geospatial information gran-
ularity for advanced navigation methods.Initially, we
use Weighted Least Squares (WLS) for preliminary pro-

cessing. WLS assigns different weights to observations
based on their reliability, reducing the impact of noise
and generating a reliable covariance matrix.

After obtaining preliminary results from WLS, we
further optimize these estimates using the Kalman Fil-
ter. This recursive algorithm combines WLS-processed
GNSS measurements with a dynamic system model to
estimate the receiver’s most likely state at each time step,
effectively correcting errors and significantly improving
position accuracy. This method is crucial for real-time
navigation as it allows for continuous updates, adapting
to environmental changes and measurement conditions,
thereby enhancing positioning reliability.

To further enhance accuracy, we apply Kalman
Smoothing, an extension of the Kalman Filter. Kalman
Smoothing utilizes current, past, and future measure-
ments to improve positioning accuracy. It integrates
noisy pseudorange measurements with high-precision
Doppler shift data to smooth pseudoranges, refine state
estimates, and reduce errors. Unlike traditional carrier
phase smoothing, which often suffers from degradation
and cycle slips in urban environments, Kalman Smooth-
ing is more resilient to these issues. This method is
particularly suitable for high-precision GNSS position-
ing, especially where real-time data is limited or post-
processing is required, and it has gained wide attention
for its ability to leverage larger datasets to enhance esti-
mation accuracy.

In this project, we systematically evaluate the three
aforementioned methods. First, WLS is applied to re-
move noise and generate a covariance matrix. Next,
a Kalman Filter is constructed based on WLS results
to achieve precise real-time position estimates. Subse-
quently, Kalman Smoothing is used to further refine the
Kalman Filter results by integrating past and future mea-
surement data to fine-tune state estimates. Finally, the
effectiveness of these three methods is assessed using
Root Mean Square Error (RMSE) [6] and Percentile-
Error Evaluation (PEE) [7], with errors visualized in re-
lation to ground truth values on a map for intuitive anal-
ysis.
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2. Literature Review

2.1. Global Navigation Satellite Systems (GNSS)

The development of GNSS has evolved from early
satellite navigation systems to a comprehensive, multi-
system framework essential for modern navigation and
positioning. The first system, TRANSIT, developed by
the U.S. in the 1960s, led to the NAVSTAR GPS project
in 1973, with global coverage achieved by 1993 through
a network of 24 satellites [8]. Concurrently, the So-
viet Union developed GLONASS, achieving initial de-
ployment by 1995 [9]. Significant advancements in the
2000s included modernization of GPS and GLONASS,
the initiation of Europe’s Galileo system [10], and the
development of China’s BeiDou system, offering global
service by 2020 [11]. Today, GNSS comprises inter-
operable systems like GPS, GLONASS, Galileo, and
BeiDou, enhancing accuracy and reliability. These ad-
vancements support applications from everyday naviga-
tion to specialized fields such as precision agriculture
and autonomous vehicles, underscoring GNSS’s crucial
role in modern society.

2.2. Adaptive Filtering in GNSS

Adaptive filtering is a critical technique in signal
processing, providing real-time adaptability to chang-
ing signal characteristics. Prominent algorithms include
Least Mean Squares (LMS) [12], Normalized LMS
(NLMS) [13], and Recursive Least Squares (RLS) [14],
each offering varying balances of convergence speed
and computational complexity. Adaptive filters are ex-
tensively used in noise cancellation, echo suppression,
and system identification due to their dynamic adjust-
ment capabilities.

In GNSS applications, adaptive filtering addresses
challenges such as multipath effects, signal interfer-
ence, and dynamic environmental conditions. Multipath
mitigation is achieved by dynamically filtering out re-
flected signal components, enhancing positioning accu-
racy. Interference suppression is managed through adap-
tive identification and exclusion of unwanted signals, en-
suring cleaner data. Moreover, adaptive filters adjust
to varying environments, maintaining reliable GNSS
performance. Additionally, adaptive filtering facilitates
sensor fusion, where algorithms like the Kalman Filter
integrate GNSS data with inputs from inertial measure-
ment units (IMUs) [15] and other sensors, yielding more
accurate and robust positioning. These applications un-
derscore the significance of adaptive filtering in achiev-
ing high-precision GNSS solutions, crucial for advanced
navigation, autonomous systems, and other high-stakes
applications.

2.3. RTKLIB and GNSS Positioning Techniques

RTKLIB [16] is an open-source GNSS processing
software library developed by Japanese scientist To-
moji Takasu, designed for both real-time kinematic
(RTK) [17] and post-processing kinematic (PPK) [18]
high-precision positioning. It supports multiple GNSS
systems, including GPS, GLONASS, Galileo, and Bei-
Dou, thus enhancing positioning accuracy and reliabil-
ity through diverse satellite data. RTKLIB offers vari-
ous positioning modes such as Single Point Positioning
(SPP) [19], Differential GNSS (DGNSS) [20], RTK, and
Precise Point Positioning (PPP) [21], catering to a wide
range of application needs.

SPP, the simplest method, is suitable for low-
precision applications, relying solely on satellite sig-
nals. DGNSS improves accuracy by correcting receiver
data with reference station observations, mitigating at-
mospheric and clock errors. RTK, ideal for dynamic
and real-time applications, uses carrier phase differ-
ences between the receiver and reference stations to
achieve centimeter-level accuracy. PPP delivers high
precision globally by leveraging precise satellite orbit
and clock data without requiring real-time communica-
tion with reference stations. RTKLIB offers flexibil-
ity with its support for multiple data formats and real-
time data streams via serial and network interfaces. Its
high-precision algorithms, including Kalman filtering,
enhance stability and accuracy. As an open-source tool,
RTKLIB is highly customizable, with extensive con-
figuration options to tailor algorithms and processes.
The software includes user-friendly interfaces like RTK-
POST for post-processing and RTKNAVI for real-time
navigation.

Widely used in research and commercial applica-
tions, RTKLIB is essential in fields such as autonomous
driving, precision agriculture, GIS, and surveying, pro-
viding robust tools for high-precision GNSS position-
ing.

2.4. Accumulated Doppler Range (ADR) data

ADR data is crucial for high-precision GNSS posi-
tioning, offering centimeter-level accuracy through car-
rier phase measurements [22]. By measuring the con-
tinuous phase of GNSS satellite signals, ADR provides
greater precision than traditional pseudorange measure-
ments. Over time, these measurements mitigate ran-
dom errors and noise, enhancing positioning stability
and reliability. ADR is fundamental to advanced GNSS
techniques like Real-Time Kinematic (RTK) and Precise
Point Positioning (PPP), which utilize differential cor-
rections and precise satellite data, respectively, for supe-
rior accuracy.

Despite its advantages, ADR processing faces chal-

2



lenges such as cycle slips and multipath effects, necessi-
tating sophisticated detection and correction algorithms.
ADR applications include autonomous vehicle naviga-
tion, precision agriculture, and geophysical monitoring,
offering high-precision geospatial measurements essen-
tial for topographic surveys, cadastral mapping, and in-
frastructure development. Realizing the full potential of
ADR requires high-quality GNSS receivers capable of
precise carrier phase tracking and robust signal process-
ing to address environmental and technical challenges.

2.5. Factor Graph Optimization (FGO)

Factor Graph Optimization (FGO) is a robust frame-
work extensively used in robotics, computer vision, and
GNSS positioning to solve complex estimation prob-
lems [23]. It represents variables and their interdepen-
dencies through a bipartite graph comprising variable
nodes and factor nodes, which correspond to the sys-
tem’s constraints or measurements. This representation
allows for the efficient formulation and solution of non-
linear least squares optimization problems.

FGO’s strength lies in its ability to integrate diverse
information sources, enhancing the accuracy and ro-
bustness of the estimated variables. In robotics, FGO
is central to Simultaneous Localization and Mapping
(SLAM) [24], enabling precise trajectory estimation and
environmental mapping. In GNSS, FGO amalgamates
measurements like pseudorange and carrier phase data
to improve positioning precision.

The optimization process typically employs it-
erative nonlinear optimization algorithms such as
Gauss-Newton, Levenberg-Marquardt, and incremental
smoothing and mapping (ISAM), which iteratively re-
fine variable estimates to minimize overall error. The
flexibility and scalability of factor graphs make them
ideal for handling large-scale, real-world problems, pro-
viding a powerful tool for high-precision applications.

3. Methods

3.1. Weighted Least Square (WLS)

Weighted Least Squares (WLS) is an extension of the
ordinary least squares (OLS) [25] method that accounts
for varying degrees of reliability in the data points by as-
signing different weights to them. This technique min-
imizes the weighted sum of squared residuals, leading
to more accurate parameter estimates when the observa-
tions have non-constant variances. Normally, WLS in-
cludes 4 main components: Objective Function, Weight
Matrix, Normal Equations, Choosing Weights. The ob-
jective of WLS is to minimize the following weighted

sum of squared residuals:

min
β

n∑
i=1

wi(yi −Xiβ)
2 (1)

where:

• wi is the weight for the i-th observation.

• yi is the observed value.

• Xi is the row vector of predictor variables for the
i-th observation.

• β is the vector of parameters to be estimated.

The weights are represented in a diagonal matrix W :

W = diag(w1, w2, . . . , wn) (2)

The WLS estimates are obtained by solving the
weighted normal equations:

β̂ = (XTWX)−1XTWy (3)

where: X is the matrix of predictor variables and y is
the vector of observed values.

Weights wi are typically chosen as the inverse of the
variance of the measurement errors:

wi =
1

σ2
i

(4)

where: σ2
i is the variance of the i-th measurement

error.
Implement WLS in a GNSS positioning algorithm to

enhance accuracy by weighting measurements accord-
ing to their reliability.

3.2. Kalman Filter (KF)

KF is a recursive algorithm used for estimating the
state of a dynamic system from a series of incom-
plete and noisy measurements. Named after Rudolf E.
Kalman, who published the foundational paper in 1960,
the KF is widely used in various fields, including sig-
nal processing, control systems, and GNSS positioning.
Normally, WLS includes following main steps:

• State Transition Model:The system is represented
in a state-space model, comprising a state transition
model and a measurement model.

xk = Fkxk−1 +Bkuk +wk (5)

where: xk is the state vector at time k. Fk is the
state transition matrix. Bk is the control input ma-
trix. uk is the control input vector. wk is the pro-
cess noise vector, assumed to be Gaussian with co-
variance Qk.
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• Measurement Model:

zk = Hkxk + vk (6)

where: zk is the measurement vector at time k. Hk

is the measurement matrix. vk is the measurement
noise vector, assumed to be Gaussian with covari-
ance Rk.

Kalman Filter Equations include two stepsPrediction
Step and Update Step.

• Prediction Step:

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk (7)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (8)

where: x̂k|k−1 is the predicted state estimate and
Pk|k−1 is the predicted error covariance.

• Update Step:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (9)
x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) (10)
Pk|k = (I−KkHk)Pk|k−1 (11)

where: Kk is the Kalman gain, x̂k|k is the updated
state estimate, and Pk|k is the updated error covari-
ance.

In GNSS applications, Kalman Filtering is used to
improve the accuracy and reliability of position esti-
mates by integrating GNSS measurements with dynamic
models of the receiver’s motion. The GNSS observation
model involves pseudorange or carrier phase measure-
ments, which can be incorporated into the measurement
model of the Kalman Filter.

KF method has many advantages in GNSS:

• Real-Time Processing: The recursive nature of the
KF makes it suitable for real-time GNSS applica-
tions.

• Error Mitigation: Effectively reduces the impact
of measurement noise and improves the accuracy
of position estimates.

• Adaptive: Can be extended to non-linear models
using the Extended Kalman Filter (EKF) [26] or
the Unscented Kalman Filter (UKF) [27], making
it versatile for various GNSS scenarios.

3.3. Kalman Smoothing (KS)

KS is an extension of the Kalman Filter designed to
improve the accuracy of state estimates by considering
not only past and present measurements but also future
ones. It provides smoothed estimates of the state vector

by incorporating all available data over a given time pe-
riod, resulting in more accurate and reliable estimates
compared to filtering alone. The two most common
KS techniques are the Rauch-Tung-Striebel (RTS) [28]
smoother and the fixed-interval smoother [29]. We in-
troduce and use the RTS mainly.

1. Kalman Filter Recap: This part is same with the
KF steps.

2. Kalman Smoothing:

• Forward Pass:The first step involves running
the standard KF forward in time to compute
the filtered estimates x̂k|k and the error co-
variance Pk|k.

• Backward Pass:The second step involves
running a backward pass to refine these esti-
mates by incorporating future measurements.

3. Rauch-Tung-Striebel (RTS) Smoother: The RTS
smoother is a popular fixed-interval smoothing al-
gorithm that uses the results from the forward pass
(KF) and performs a backward pass to produce
smoothed estimates. RTS Smoothing Equations:

Gk = Pk|kF
T
k+1P

−1
k+1|k (12)

x̂k|N = x̂k|k +Gk(x̂k+1|N − x̂k+1|k) (13)

Pk|N = Pk|k +Gk(Pk+1|N −Pk+1|k)G
T
k

(14)

where:

• x̂k|N is the smoothed state estimate at time k.

• Pk|N is the smoothed error covariance.

• Gk is the smoothing gain.

In GNSS applications, KS is used to enhance the ac-
curacy of position estimates by considering the entire
sequence of measurements over a time interval, rather
than just relying on current and past measurements.

KS method has many advantages in GNSS:

• Enhanced Accuracy: By considering future mea-
surements, KS provides more accurate and reliable
position estimates than filtering alone.

• Noise Reduction: Reduces measurement noise im-
pact, yielding smoother position estimates.

• Post-Processing: Particularly useful in scenarios
where real-time processing is not critical, allowing
for post-processing to achieve higher accuracy.
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4. Experiments

4.1. Dataset and Preprocessing

4.1.1 Dataset Description

The dataset for this project originates from the Smart-
phone Decimeter Challenge 2023 [30], facilitated by
Google’s data research team. It includes data from four
Android smartphones (Pixel 4, Pixel 4 XL, Pixel 5, Mi
8), presenting challenges such as noise and variations
from different satellite configurations. The dataset com-
prises GNSS logs, ground truth CSV files, and IMU
readings.

GNSS logs provide raw GPS positions in Earth-
Centered, Earth-Fixed (ECEF) coordinates, which re-
quire conversion to latitude and longitude for practi-
cal application. Ground truth CSV files contain accu-
rate location data for evaluating the solutions’ accuracy.
IMU readings, including accelerometer and gyroscope
data, offer supplementary data for positioning, calibra-
tion, and error compensation, enhancing robustness.

Spanning from May 2020 to December 2023, this
comprehensive dataset includes positioning data sam-
pled by various smartphones. The data is stored in
device gnss.csv, device imu.csv, and ground truth.csv
files, with positional information in ECEF coordinates.
This detailed dataset provides a rich foundation for ad-
dressing challenges and advancing GNSS positioning
accuracy.

D_2023 metadata

test Date_i

Date_i+1

train Date mi8 supplemental

d_g.csv

d_imu.csv

g_t.csv

pixel4

pixel4xl

pixel5

Date_i

The provided .csv files contain 58 columns captur-
ing various aspects such as time, position, satellite infor-
mation, frequency, and associated uncertainties. These
columns are crucial for understanding the dataset. As
shown in Figure 1, the path data is notably noisy and ex-
hibits low accuracy. Key columns in this dataset include:

• svid: Denotes the satellite index.

• utcTimeMillis: Represents the current time in
GNSS clock timestamp.

• SvPosition[X/Y/Z] EcefMeters: Indi-
cates the satellite’s position in ECEF coordinates.

• SvVelocity[X/Y/Z] EcefMeters
PerSecond: Describes the satellite’s veloc-
ity in ECEF coordinates.

• Pseudorange: The measured pseudorange.

• UncertaintyMeters: The error estimate of
the position.

• PseudorangeRate: The rate of change of the
pseudorange.

• UncertaintyMetersPerSecond: The error
estimate of the velocity.

4.1.2 Data Preprocessing

Raw data was initially extracted from the GNSS
database, including measurements from multiple satel-
lites. Identifying and removing outliers and corrupted
data points was essential to ensure dataset reliability and
prevent skewed results.

The data was then organized by satellite source, ac-
counting for variations across GNSS systems. Key
information, such as position (latitude, longitude, al-
titude), sampling time, and velocity, was extracted
through GNSS protocol analysis.

1. Data Retrieval and Cleaning:

• GNSS was extracted for analysis.

• Outliers and corrupted data were removed to
ensure data integrity and quality.

2. Data Grouping:

• Data was grouped by satellite source to facil-
itate efficient GNSS protocol analysis.

3. GNSS Protocol Analysis:

• Key positional information (latitude, longi-
tude, altitude), sampling times, and velocities
were extracted.

• Earth-Centered Earth-Fixed (ECEF) coordi-
nates were converted to geographic coordi-
nates (latitude and longitude) [31].

This systematic approach ensures the accuracy and
reliability of the data used for subsequent processing, es-
tablishing a robust foundation for high-precision GNSS
positioning analysis.
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4.2. Method Formulation

4.2.1 WLS Estimation

In GNSS positioning, Weighted Least Squares (WLS) is
used to estimate position and velocity parameters. Accu-
rate initial values are crucial for WLS convergence and
error estimation, so a preliminary normal Least Squares
(LS) [32] method is first applied.

The WLS step produces:

• xwls and vwls: Matrices representing the estimated
position and velocity (longitude, latitude, altitude).

• covx and covv: Covariance matrices indicating the
uncertainty of each sample.

GNSS positioning depends on pseudorange measure-
ments from multiple satellites, which vary in accuracy
due to satellite geometry, signal quality, and atmospheric
conditions. The basic observation model for these mea-
surements accounts for these variations, refining the po-
sition estimates.

This systematic WLS approach, based on initial LS
estimates, ensures accurate and reliable GNSS position-
ing by addressing measurement variabilities.

We could build the basic observation model for
GNSS pseudorange measurements is:

ρi =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 + cδt+ ϵi
(15)

where: ρi is the observed pseudorange. (x, y, z) is
the receiver’s position. (xi, yi, zi) are the satellite’s co-
ordinates. c is the speed of light. δt is the receiver clock
bias. ϵi is the measurement noise.

Rewrite the observation model in matrix form:

ρ = Hp+ e (16)

where: ρ is the vector of observed pseudoranges. H
is the design matrix relating satellite positions to the re-
ceiver position. p is the vector of unknowns (receiver
position and clock bias). e is the vector of measurement
errors.

Construct the weight matrix W based on the variances
of the pseudorange measurements:

W = diag
(

1

σ2
1

,
1

σ2
2

, . . . ,
1

σ2
n

)
(17)

Apply the weighted normal equations to solve for the
unknowns:

p̂ = (HTWH)−1HTWρ (18)

4.2.2 WLS+KF Estimation

Following WLS estimation, Kalman Filtering was ap-
plied to refine position and velocity estimates. The vari-
able correspondences are detailed below.

State Vector: Typically includes position, velocity,
and possibly other parameters such as clock bias.

xk =
[
xk yk zk vx,k vy,k vz,k δtk

]T
(19)

State Transition Model: Reflects the motion dynam-
ics of the receiver, often modeled as constant velocity or
constant acceleration.

Fk =

I ∆t · I 0
0 I 0
0 0 1

 (20)

Measurement Model: Relates the GNSS measure-
ments (e.g., pseudoranges) to the state vector.

Prediction Step: Uses the state transition model to
predict the next state and error covariance.

Update Step: Incorporates the GNSS measurements
to update the state estimate and error covariance.

4.2.3 WLS+KS Estimation

Following KF, KS was applied. The forward step of
smoothing mirrors standard KF, predicting state esti-
mates and updating them with new measurements for
refined positioning results. The observation model re-
mains consistent, using pseudorange or carrier phase
measurements.

Implementing Kalman Smoothing:

• Forward Pass: Execute the standard Kalman Filter
to obtain filtered estimates x̂k|k and Pk|k.

• Backward Pass: Use the RTS smoothing equa-
tions to refine these estimates by incorporating fu-
ture measurements.

4.3. Evaluation and Visualization

4.3.1 Distance Errors

The error, defined as the absolute distance between es-
timated positions and the ground truth, is illustrated for
each sample across different models in the accompany-
ing figure. The average error, calculated as the mean of
all sample errors, is presented in Figure 1 below.

Figure 1 compares error values across the Original
Measurement, WLS, KF, and KS models. The Original
Measurement exhibits the highest error variability, with
significant spikes indicating substantial deviations from
the ground truth. WLS partially mitigates these errors,
refining initial estimates. KF consistently reduces er-
rors by integrating dynamic modeling and measurement
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Figure 1: Distance Error

updates. KS achieves the most significant error reduc-
tion by leveraging both past and future measurements
for the most accurate position estimates. Figure 1 quan-
tifies these improvements, showcasing the progressive
enhancement in positioning accuracy through advanced
filtering and smoothing techniques.

4.3.2 Evaluation Scores

1. RMSE Score:

The Root Mean Square Error (RMSE) provides a
measure of the average deviation between predicted
values and actual values, assuming errors follow a
normal distribution. The formula for RMSE is:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (21)

where yi is the actual value, ŷi is the predicted
value, and n is the number of samples. RMSE
is particularly sensitive to large deviations due to
squaring all errors, giving more weight to larger er-
rors.

The RMSE scores obtained shows in Figure 2:

These results indicate that applying WLS signif-
icantly reduces the error compared to the base-
line. As shown in Figure 2, further improvements
are seen with the KF, and the best performance is
achieved with KS.

2. Percentile-Error Evaluation Score (PEE):

The PEE Score calculates the mean of the 50th and
95th percentile distance errors, providing insights

Baseline WLS WLS+KF WLS+KS

8 · 10−2

0.1

0.12

0.14
0.13962

0.13197

0.08974

0.08194

Method

R
M

SE
Sc

or
e

RMSE Scores for Different Methods

Figure 2: RMSE Scores for Different Methods

into the distribution characteristics and specific er-
ror positions. The formula for percentile error eval-
uation includes: Distance Error Calculation, Per-
centile Errors (50th & 95th Percentile Error) and
Average Error Calculation, Overall Mean Error.

a = sin2
(
∆φ

2

)
+cos(φ1) ·cos(φ2) ·sin2

(
∆λ

2

)
(22)

c = 2 · atan2
(√

a,
√
1− a

)
(23)

d = R · c (24)

where: ∆φ is the difference in latitude. ∆λ is the
difference in longitude. φ1 and φ2 are the latitudes.
R is the Earth’s radius. d is the distance error.

Average Error =
50th P-Error + 95th P-Error

2
(25)

Overall Mean Error =
∑

Average Errors
Number of Devices

(26)

The results and Figure 3 demonstrate a significant er-
ror reduction with advanced filtering techniques, with
KS achieving the lowest errors, indicating enhanced po-
sitioning accuracy and reliability.

Evaluation metrics show the effectiveness of WLS,
KF, and KS in improving GNSS positioning accuracy.
Both RMSE and Percentile-Error scores decrease pro-
gressively with these techniques. KS provides the most
precise estimates, effectively reducing both average and
percentile errors. This approach, using WLS for initial
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Baseline WLS WLS+KF WLS+KS
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Percentile-Error Evaluation Scores

Figure 3: PEE Scores for Different Methods

refinement and advanced Kalman techniques for opti-
mization, substantially improves GNSS positioning per-
formance.

4.3.3 Path Visualization

Using Folium, Figure 4 visualized the estimated posi-
tions on a map, comparing the paths derived from each
method against the ground truth. Despite consistent per-
formance improvements across methods, including KS,
none achieved an average error below 1 meter. Thus,
Percentile-Error Evaluation offers a more nuanced as-
sessment. Our results, with errors between 1 and 2 me-
ters, are competitive and align with the standards ob-
served among other participants.

5. Conclusion
This project validated the effectiveness of Weighted

Least Squares (WLS), Kalman Filtering (KF), and
Kalman Smoothing (KS) in enhancing GNSS position-
ing accuracy. Each technique offers unique benefits and
trade-offs.

WLS provides foundational estimates and convenient
covariance computation but lacks dynamic updates, re-
sulting in limited performance improvement.

KF significantly enhances positioning accuracy with
real-time data processing, suitable for navigation and
other real-time applications. However, it relies solely
on current and past measurements, which may not fully
eliminate errors.

KS achieves the highest accuracy by utilizing both
past and future data, ideal for post-processing applica-
tions. Its primary limitation is the requirement for off-
time processing and access to the entire dataset, making

(a) Yellow Line: Ground Truth
Red Line: Original Data from devices
GNSS

(b) Yellow Line: Ground Truth
Green Line: WLS

(c) Yellow Line: Ground Truth
Blue Line: WLS + KF

(d) Yellow Line: Ground Truth
Grey Line: WLS + KS

Figure 4: Comparison of Different GNSS Positioning
Techniques

it unsuitable for real-time use.
In summary, WLS is essential for initial parameter

estimation, KF is optimal for real-time applications with
notable accuracy improvements, and KS excels in post-
processing scenarios, delivering the highest precision.
Designers must consider the trade-offs between perfor-
mance, complexity, and real-time requirements when
developing GNSS systems.
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