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Abstract

Wheat is a fundamental grain in many food products, making its cultivation and
management critical. Accurate detection of wheat heads in field images is essential
for estimating crop health and yield. However, this task is challenging due to the
dense overlap of plants and varying environmental conditions. This study aims
to enhance wheat head detection using convolutional neural networks (CNNs),
focusing on creating a generalized solution applicable across diverse growing
environments. We utilized datasets from the Global Wheat Detection Competition,
SPIKE dataset, and Wheat 2017 dataset, incorporating advanced data augmentation
techniques such as custom mosaic augmentation, MixUp, and heavy augmentation
to improve model robustness. Our approach involved extensive data preprocessing,
integration of external datasets, and a comprehensive model training process using
EfficientDet and Faster R-CNN FPN models. The training strategy included five-
fold stratified cross-validation, mixed precision training, and pseudo labeling to
iteratively refine model performance. Model ensemble techniques and test time
augmentation further boosted detection accuracy. The evaluation, based on mean
average precision (mAP) across different Intersection over Union (IoU) thresholds,
demonstrated significant improvements in wheat head detection accuracy. The
EfficientDet-D7 model with larger image sizes showed superior performance, and
the iterative pseudo labeling process effectively enhanced model generalization.
This research provides a robust framework for wheat head detection, aiding farmers
in better crop management and contributing to the quality and availability of
wheat-based products.

1 Introduction

Wheat, a staple grain found in many households, is integral to numerous food products, including
morning toast and cereal. Its significance as both a food and a crop has made wheat the subject of
extensive scientific study. To obtain comprehensive and accurate data about wheat fields globally,
plant scientists employ image detection techniques to identify “wheat heads” — the spikes on the plant
containing grains. These images are crucial for estimating the density and size of wheat heads across
different varieties, enabling farmers to assess crop health and maturity for better field management
decisions. However, accurately detecting wheat heads in outdoor field images presents considerable
challenges. Dense wheat plants often overlap, and wind can cause blurriness in photographs, making
it difficult to distinguish individual wheat heads. Furthermore, variations in appearance due to
differences in maturity, color, genotype, and head orientation complicate the detection process. Given
the global cultivation of wheat, models developed for wheat phenotyping must generalize across
diverse growing environments. Current detection methods, such as one- and two-stage detectors like
Yolo-V3 [1] and Faster-RCNN [2], still exhibit biases towards the training region, even when trained
on large datasets. In this project, we aim to develop a model for detecting wheat heads from outdoor
images of wheat plants, focusing on creating a generalized solution that estimates the number and
size of wheat heads. Our objective is to improve the accuracy and robustness of wheat head detection,



enabling farmers to better assess their crops. Successful development of such a model will allow
researchers to accurately estimate the density and size of wheat heads in different varieties. Improved
detection capabilities will enable farmers to better assess their crops, ultimately enhancing the quality
and availability of wheat-based products like cereal and toast for consumers worldwide.

2 Related Work

2.1 Cosine Annealing: Concept and Principles

Cosine Annealing is a learning rate scheduling technique introduced to improve the efficiency and
performance of deep learning models during training. This method, detailed in the paper "SGDR:
Stochastic Gradient Descent with Warm Restarts" by Ilya Loshchilov and Frank Hutter, leverages a
cosine function to modulate the learning rate over the training epochs, providing a cyclical schedule
that enhances the model’s ability to converge to a better local minimum. [3]

In deep learning, the choice of learning rate significantly influences the convergence and overall
performance of the model. Traditional fixed or exponentially decaying learning rates can either lead
to slow convergence or risk overshooting optimal solutions. Cosine Annealing addresses these issues
by periodically adjusting the learning rate following a cosine curve, ensuring a smooth transition
from a higher learning rate to a lower one over a defined period.

The learning rate ηt at epoch t is computed using the following formula:

ηt = ηmin +
1
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(
Tcur
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π

))
(1)

where ηmin is the minimum learning rate, ηmax is the maximum (initial) learning rate, Tcur is
the current epoch within the cycle, and Tmax is the maximum number of epochs in one cycle.
This equation ensures that the learning rate starts at ηmax, gradually decreases to ηmin, and then
resets, following a cosine function. This periodic resetting, known as a "warm restart," allows the
model to escape local minima and explore the parameter space more effectively, promoting better
generalization.

Cosine Annealing is particularly beneficial for computer vision tasks, which often involve training
deep convolutional neural networks (CNNs) that require careful tuning of the learning rate to
achieve optimal performance. The smooth decay of the learning rate helps in stabilizing the training
process and avoiding oscillations in the loss landscape. Moreover, the warm restarts inject beneficial
randomness, which can help the model converge to more optimal solutions by re-energizing the
learning process periodically.

The SGDR approach, as outlined by Loshchilov and Hutter, has demonstrated superior performance
in various deep learning applications, including image classification and object detection tasks. By
providing a more dynamic and responsive learning rate schedule, Cosine Annealing contributes to
faster convergence and improved accuracy, making it a valuable tool in the deep learning practitioner’s
toolkit.

2.2 Weighted-Boxes-Fusion (WBF): Enhancing Object Detection Accuracy

Weighted-Boxes-Fusion (WBF) is an advanced post-processing technique for object detection tasks,
designed to enhance detection accuracy by merging the outputs of multiple detection models. Unlike
traditional methods such as Non-Maximum Suppression (NMS), which might discard valuable
information by retaining only the highest confidence detections and suppressing overlapping ones,
WBF aggregates the detection boxes from different models or instances by leveraging their confidence
scores to compute a weighted average. This approach results in more precise and reliable detection
outcomes.

The principle behind WBF involves the following steps:

• Collection of Candidate Boxes: All predicted bounding boxes and their corresponding
confidence scores from multiple models are gathered.

• Weighted Averaging of Boxes: For each detection box, the method identifies overlapping
boxes that exceed a specified Intersection over Union (IoU) threshold. These overlapping
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boxes are then combined using a weighted average, where the weights are derived from the
confidence scores of each box. This process takes into account the relative confidence of
each detection, thereby producing a more accurate representation of the object’s location
and size.

• Generation of Fusion Boxes: The weighted averaged boxes are used as the final detection
results, effectively integrating information from multiple sources to improve overall detection
performance.

WBF offers several advantages over traditional NMS. By incorporating the confidence scores of
overlapping boxes, WBF mitigates the risk of losing critical information and provides a more nuanced
fusion of detections. This leads to improved localization accuracy and robustness, particularly in
complex scenarios where multiple detectors might produce slightly varying predictions for the same
object.

The original paper "Weighted Boxes Fusion: Ensembling Boxes from Different Object Detection
Models" by Roman Solovyev, Vadim Buza, and Igor Ginsburg, presents a detailed explanation of
the WBF algorithm and its efficacy [4]. The authors demonstrate through extensive experiments that
WBF significantly outperforms conventional NMS and other ensemble methods in terms of precision
and recall across various datasets.

2.3 Stochastic Gradient Descent (SGD) and Adam Optimizers

Stochastic Gradient Descent (SGD) is a fundamental optimization algorithm widely used in training
deep neural networks. It aims to minimize the loss function by iteratively updating the model
parameters in the direction of the negative gradient of the loss with respect to the parameters [5].

SGD operates by randomly sampling a mini-batch of data from the training set at each iteration,
computing the gradient of the loss function with respect to the mini-batch, and updating the parameters
accordingly. The update rule for SGD is defined as:

θt+1 = θt − η∇θL(θt, xi, yi) (2)
where θt represents the parameters at iteration t, η is the learning rate, and ∇θL(θt, xi, yi) is the
gradient of the loss function L with respect to the parameters, computed for a mini-batch (xi, yi).

While SGD is simple and effective, it requires careful tuning of the learning rate and may converge
slowly in some cases. Techniques such as momentum can be applied to accelerate convergence by
accumulating a velocity vector that keeps track of previous parameter updates.

Adam (Adaptive Moment Estimation) is an optimization algorithm introduced by Diederik P. Kingma
and Jimmy Ba in 2014 [6]. It combines the advantages of two other extensions of SGD, AdaGrad and
RMSProp, to provide efficient and effective optimization.

Adam computes individual adaptive learning rates for each parameter by estimating both the first and
second moments of the gradients. The update rules for Adam are defined as follows:

mt = β1mt−1 + (1− β1)∇θL(θt) (3)

vt = β2vt−1 + (1− β2)(∇θL(θt))
2 (4)

m̂t =
mt

1− βt
1

(5)

v̂t =
vt

1− βt
2

(6)

θt+1 = θt − η
m̂t√
v̂t + ϵ

(7)

where: mt and vt are the first and second moment estimates, β1 and β2 are the decay rates for
these estimates, m̂t and v̂t are bias-corrected moment estimates, and ϵ is a small constant to prevent
division by zero.

Adam’s adaptive learning rate, combined with momentum from the first moment estimate, enables
efficient optimization and faster convergence compared to traditional SGD. It is widely used in deep
learning applications due to its effectiveness and ease of use.
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These optimization algorithms play a crucial role in training deep neural networks for computer
vision tasks, providing the foundation for efficient and effective model optimization.

2.4 NVIDIA Apex: High-Performance Training for Deep Learning Models

NVIDIA Apex is a PyTorch extension designed to optimize the training process of deep learning
models, particularly for large-scale tasks in computer vision and other domains. It offers tools and
techniques for mixed precision training and distributed training, which are essential for leveraging
modern hardware architectures efficiently [7].

One of the key features of NVIDIA Apex is its support for mixed precision training. Mixed precision
training involves using both 16-bit and 32-bit floating point types in a model to reduce memory
usage and increase computational efficiency without sacrificing model accuracy. This technique is
particularly beneficial for training large-scale models on GPUs with limited memory capacity.

Apex’s Automatic Mixed Precision (AMP) feature simplifies the implementation of mixed precision
training by automatically converting certain operations to 16-bit precision while keeping others in
32-bit precision. This approach ensures stability during training and can lead to faster convergence
and improved training times.

NVIDIA Apex also provides tools for distributed training, allowing models to be trained across
multiple GPUs or even across multiple nodes in a cluster. This is essential for scaling training
to handle large datasets and complex models, as it enables parallel processing and accelerates the
training process.

Apex’s Distributed Data Parallel (DDP) module enhances PyTorch’s native distributed training
capabilities by providing better performance and usability. It ensures efficient communication
and synchronization of gradients and model parameters across multiple GPUs, enabling seamless
parallelization of training tasks.

3 Method

3.1 Data Processing

In this project, we employed several advanced data augmentation techniques to improve the robustness
and performance of our wheat head detection models. These techniques include Custom Mosaic
Augmentation, MixUp, and Heavy Augmentation. Each of these techniques was selected for its
ability to enhance the model’s generalization capabilities and performance in diverse and challenging
conditions.

3.1.1 Custom Mosaic Augmentation:

Custom Mosaic Augmentation involves combining multiple images into a single composite image.
This technique is particularly effective for object detection tasks as it significantly increases the
variety of object placements and contexts within a single training batch. By randomly selecting and
cropping regions from multiple images and then stitching them together, we create more complex
training samples that help the model learn to detect objects under varied conditions [8].

In our implementation, the load_cutmix_image_and_boxes function was used to load and combine
four images into one. This augmentation not only diversifies the training data but also helps the
model become more resilient to occlusions and overlapping objects, which are common challenges in
wheat head detection.

3.1.2 MixUp:

MixUp is an augmentation strategy where two images and their corresponding labels are linearly
combined to create a new training sample. This technique helps in regularizing the model by
encouraging it to learn smoother decision boundaries. MixUp also reduces the model’s tendency to
overfit by providing a form of data interpolation between samples. [9]

During training, MixUp was applied by blending images and their bounding boxes with a random
coefficient. This results in mixed images where wheat heads from different images overlap, providing
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additional complexity and variability to the training data. This approach improves the model’s
generalization capabilities and robustness.

3.1.3 Heavy Augmentation:

Heavy Augmentation involves applying a wide range of transformations to the training images to
further increase the variability of the dataset. These transformations include random flips, rotations,
blurring, sharpening, noise addition, color adjustments, and more. By extensively augmenting the
training images, we aim to expose the model to a vast array of potential real-world scenarios, thus
improving its adaptability and performance. [10]

In our experiments, heavy augmentation was implemented using the albumentations library. The
augmentation pipeline included horizontal and vertical flips, random grayscale conversion, Gaussian
noise, motion blur, median blur, CLAHE (Contrast Limited Adaptive Histogram Equalization),
sharpening, embossing, brightness and contrast adjustments, and hue and saturation changes. These
augmentations were applied probabilistically to each training image, ensuring a diverse and challeng-
ing dataset for the model to learn from.

These advanced data augmentation techniques played a crucial role in enhancing the performance of
our wheat head detection models. By increasing the variability and complexity of the training data,
we were able to train models that are more robust and capable of generalizing well to unseen data,
ultimately leading to better detection accuracy and reliability.

3.2 Models

In this project, we utilized two state-of-the-art object detection models: Faster R-CNN with Feature
Pyramid Networks (FPN) and EfficientDet. These models were selected for their strong performance
in object detection tasks and their complementary strengths.

3.2.1 Faster R-CNN with FPN:

Faster R-CNN is a two-stage object detection model that first proposes regions of interest (ROIs) and
then classifies and refines these regions. The addition of Feature Pyramid Networks (FPN) enhances
Faster R-CNN by allowing it to detect objects at multiple scales more effectively. FPN creates a
feature pyramid from a single-scale input, enabling the detection of objects of different sizes using
the same network [11].

In our experiments, we used a ResNet-152 backbone with FPN for Faster R-CNN. The model was
fine-tuned on our wheat head dataset using a stratified 5-fold cross-validation approach. Each fold
was trained with a Stochastic Gradient Descent (SGD) optimizer and an initial learning rate of 5e-3,
with a cosine annealing learning rate scheduler to gradually decrease the learning rate over time.
Mixed precision training with NVIDIA Apex was employed to speed up training and reduce memory
usage. This setup allowed us to leverage the robust feature extraction capabilities of ResNet-152 and
the multi-scale detection capabilities of FPN, resulting in accurate and reliable wheat head detection.

3.2.2 EfficientDet:

EfficientDet is a family of object detection models that balance accuracy and efficiency by combining
EfficientNet as the backbone with a customized BiFPN (Bi-directional Feature Pyramid Network).
EfficientDet models are known for their high performance while maintaining computational efficiency,
making them suitable for large-scale detection tasks.

For our experiments, we used EfficientDet-D7 [12], the largest variant in the EfficientDet family,
which offers the highest accuracy. The model was trained using an Adam optimizer with an initial
learning rate of 5e-4, also employing a cosine annealing learning rate scheduler. Similar to Faster
R-CNN, we used mixed precision training to enhance training efficiency. EfficientDet-D7 was chosen
for its ability to capture fine-grained details and detect small objects, which is crucial for accurately
identifying wheat heads in high-resolution field images.

By utilizing these two complementary models, we aimed to maximize the detection performance for
wheat heads in various environmental conditions and image qualities. The combination of Faster
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R-CNN with FPN and EfficientDet allowed us to leverage their respective strengths, resulting in a
robust and accurate wheat head detection system.

3.3 Pseudo Labeling

Pseudo labeling is a semi-supervised learning technique where a model is trained on a labeled dataset
and then used to generate predictions (pseudo labels) for an unlabeled dataset [13]. These pseudo
labels are then used as ground truth labels in subsequent training rounds, effectively augmenting
the original labeled dataset with additional labeled data. This approach can help improve model
performance by leveraging additional data that was initially unlabeled.

In our experiment, we used pseudo labeling to further enhance the performance of our EfficientDet
model. Initially, the model was trained on the labeled dataset, and the trained model was used to
predict labels for an unlabeled dataset. These predictions were then added to the training set for
subsequent rounds of training. This iterative process allowed the model to benefit from the additional
data, leading to improved performance and robustness.

4 Experiments

4.1 Dataset description and data format

The dataset utilized in this study consists of three parts, focusing on wheat spike detection using
convolutional neural networks (CNNs). The primary dataset is derived from the Global Wheat
Detection Competition [14], while two additional datasets, the SPIKE dataset and Wheat 2017 [15]
dataset, are incorporated to enhance the robustness and generalizability of the model.

The primary dataset comprises images from wheat fields captured across various global locations,
annotated with bounding boxes identifying individual wheat heads. This dataset is curated to provide
a diverse range of conditions and environments. The images are contained within train.zip and
test.zip. The training images are used for training the CNN models, and a small subset of test images
is available for preliminary testing and code development, with the majority reserved for official
evaluation. Annotations for training images are provided in train.csv, which includes the unique
identifier for each image (image_id), the dimensions of each image (width and height), and the
bounding box coordinates formatted as a list [xmin, ymin, width, height]. A sample_submission.csv
file is also provided to demonstrate the format for submitting predictions.

Not all images include wheat heads or associated bounding boxes. Each bounding box’s details are
captured in a separate row within train.csv, ensuring easy mapping between image files and their
annotations.

To supplement the primary dataset, two additional datasets are incorporated. The SPIKE dataset,
sourced from the PBRC, contains images with manually annotated ground truth labels for wheat
spike detection. These images are used for training and testing CNN models and are cropped to a
size of 1024x1024 pixels to standardize input dimensions. The Wheat 2017 dataset, sourced from the
University of Nottingham’s plant images repository, includes images of wheat shoots in a glasshouse
environment. Annotations for this dataset include spike locations, spikelets, and labels of awned
phenotypes. Similar to the SPIKE dataset, the images are cropped to 1024x1024 pixels to ensure
uniformity and reduce computational complexity.

To maintain consistency across the datasets, all images are resized to 256x256 pixels where necessary.
This resizing ensures that the computational demands of the CNN models are mitigated, allowing for
efficient and effective model training and evaluation.

In summary, the integration of these diverse datasets, along with meticulous preprocessing and
annotation efforts, provides a robust foundation for developing accurate and reliable CNN models for
wheat spike detection in various environments. This comprehensive approach ensures the credibility
and effectiveness of the research outcomes.

4.2 Experimental Flow

The experimental flow of this study involves a comprehensive approach to optimize the detection of
wheat spikes using convolutional neural network (CNN) models. The methodology encompasses
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data augmentation, model training, pseudo labeling, and model ensemble techniques to achieve high
detection accuracy.

4.2.1 Data Preprocessing:

We utilized custom mosaic data augmentation to enhance the diversity of training data. This method
combines four training images into one, retaining the border information which is crucial for object
detection tasks, as shown in Figure 1.

Figure 1: Custom Mosaic Augmentation

Additionally, MixUp was employed to blend two images and their labels, generating new training
samples to improve the model’s generalization capability. Various heavy augmentation techniques
were applied, including RandomCrop, HorizontalFlip, VerticalFlip, ToGray, IAAAdditiveGaussian-
Noise, GaussNoise, MotionBlur, MedianBlur, Blur, CLAHE (Contrast Limited Adaptive Histogram
Equalization) [16], Sharpen, Emboss, RandomBrightnessContrast, and HueSaturationValue. The pro-
cessed image is shown in the Figure 2. These augmentations simulated various real-world scenarios
to enhance the robustness of the model. Extensive data cleaning was performed by deleting bounding
boxes with width or height less than 10 pixels and fixing excessively large bounding boxes.

4.2.2 External Data Integration:

To further augment the dataset, two external datasets were incorporated: the wheat spikes dataset and
the wheat 2017 dataset. Annotations (bounding boxes) were created for all images, and each image
was cropped to a size of 1024x1024 pixels. We ensured compliance with licensing requirements by
contacting the dataset authors. This integration of external data significantly increased the volume
and diversity of the training data, facilitating better model training.

4.2.3 Model Training:

The training process involved several detailed steps to ensure robust evaluation and optimization of
the models. Below are the key steps involved in the model training process:

• Five-Fold Stratified Cross-Validation: The dataset was split into five folds based on
different sources (e.g., usask_1, arvalis_1, arvalis_2). This technique ensures that each
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Figure 2: Examples after Apply Mosaic, Mixup, Augmentation

fold is representative of the entire dataset, allowing for robust evaluation of the model’s
performance across different data distributions.

• Optimizers: EfficientDet Models: Trained using the Adam optimizer with an initial
learning rate (LR) of 5e-4. Adam is chosen for its adaptive learning rate capabilities, which
helps in faster convergence and better handling of sparse gradients. Faster RCNN FPN:
Utilized the SGD (Stochastic Gradient Descent) optimizer with an initial LR of 5e-3. SGD
is known for its effectiveness in training deep learning models, especially when combined
with momentum to accelerate the training process and mitigate oscillations.

• Learning Rate Scheduler: A cosine annealing scheduler was used to dynamically adjust
the learning rate. This scheduler reduces the learning rate in a cosine manner, promoting
stable and efficient training by allowing the model to make large updates in the initial phases
and fine-tuning in later stages.

• Mixed Precision Training: Implemented using NVIDIA Apex, mixed precision training
involves the use of both 16-bit and 32-bit floating-point numbers. This approach accelerates
the training process and reduces memory consumption, enabling the training of larger
models or the use of larger batch sizes without compromising performance.

• Warm-Up Phase: Initially, the models underwent a warm-up phase of 20 epochs. During
this phase, the training set was combined with the wheat2017 and spike wheat datasets.
The purpose of the warm-up phase is to gradually introduce the model to the training data,
stabilizing the model parameters and preventing issues such as divergence due to high initial
learning rates.

• Main Training Phase: Following the warm-up phase, the main training phase consisted of
80 epochs using the training set combined with the wheat2017 dataset. This phase focuses
on thoroughly optimizing the model parameters to achieve the best possible performance on
the validation set. The extended training duration ensures that the model has sufficient time
to learn and generalize from the augmented and diverse dataset.

4.2.4 Pseudo Labeling:

• Base Model Training: Trained EfficientDet-D6 (image size 640) on the training set.
Achieved a strong validation average precision (AP).

• Generating Pseudo Labels: Used the trained base model to generate pseudo labels for the
hidden test set. Combined pseudo labels with the original training set to form an expanded
dataset.

• First Round of Training: Trained EfficientDet-D6 for an additional 10 epochs using the
expanded dataset. Loaded weights from the base model checkpoint.
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• Second Round of Training: Continued training for 6 more epochs using the expanded
dataset.

• Last step: Loaded weights from the first round of pseudo labeling checkpoint.

This iterative pseudo labeling process progressively improved the model’s performance by continually
incorporating additional pseudo-labeled data into the training set.

4.2.5 Model Ensemble and Evaluation:

To enhance the final detection results, predictions from multiple models were combined using
Weighted-Boxes-Fusion (WBF), which leverages the strengths of individual models. During inference,
test time augmentation (TTA) techniques such as horizontal flip, vertical flip, and 90-degree rotation
were applied to further boost model performance.

By integrating sophisticated data augmentation methods, leveraging external datasets, employing
advanced training techniques such as mixed precision training and pseudo labeling, and combining
model predictions through ensemble methods, we achieved significant improvements in the detec-
tion accuracy of wheat spikes. This comprehensive approach ensures robust and reliable model
performance, suitable for real-world agricultural applications.

4.3 Results

4.3.1 Evaluation Metrics:

The evaluation of the wheat spike detection model is based on the mean average precision (mAP) at
different Intersection over Union (IoU) thresholds. The IoU metric measures the overlap between
predicted bounding boxes and ground truth bounding boxes. It is defined as the area of overlap
between the predicted and ground truth boxes divided by the area of their union:

IoU(A,B) =
A ∩B

A ∪B
(8)

It can be visualized as the following Figure 3:

Figure 3: IoU Formula

The evaluation involves sweeping over a range of IoU thresholds, calculating the average precision at
each threshold. The thresholds range from 0.5 to 0.75 with a step size of 0.05. A predicted object is
considered a "hit" if its IoU with a ground truth object exceeds the threshold.

For each threshold t, precision is calculated based on the number of true positives (TP), false negatives
(FN), and false positives (FP):

Precision(t) =
TP (t)

TP (t) + FP (t) + FN(t)
(9)

A true positive is counted when a predicted object matches a ground truth object with an IoU above
the threshold. A false positive indicates a predicted object without a matching ground truth object,
and a false negative indicates a ground truth object without a matching predicted object.
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The mean average precision of a single image is calculated as the mean of the precision values across
all IoU thresholds:

AP =
1

|thresholds|
∑
t

TP (t)

TP (t) + FP (t) + FN(t)
(10)

In the submission, bounding boxes are evaluated in order of their confidence levels. Boxes with
higher confidence are prioritized for matches against ground truth objects, which determines the
classification of true positives and false positives.

If an image has no ground truth objects, any number of predictions (false positives) will result in the
image receiving a score of zero, impacting the mean average precision.

The final score returned by the metric is the mean of the individual average precisions of each image
in the test dataset, providing a robust measure of the model’s detection accuracy across various
scenarios.

4.3.2 Performance and Analysis:

The performance of various models and training strategies was evaluated using the validation average
precision (AP) metric. The following sections present the detailed results and analysis, highlighting
the effectiveness of different techniques employed in this study.

1. The Table 1 below summarizes the validation AP achieved by different models and
configurations:

Table 1: Validation AP achieved by different models and configurations.

Network Image Size Fold Valid AP

EfficientDet-D7 768 0 0.710
EfficientDet-D7 768 1 0.716
EfficientDet-D7 768 2 0.707
EfficientDet-D7 768 3 0.716
EfficientDet-D7 768 4 0.713
EfficientDet-D7 1024 1 0.718
EfficientDet-D7 1024 3 0.720
EfficientDet-D5 512 4 0.702
EfficientDet-D6 640 1 0.716
Faster RCNN FPN-resnet152 1024 1 0.695

2. Pseudo Labeling Performanc:
The pseudo labeling technique significantly improved the model’s performance. Below are
the results of the pseudo labeling process:

• Base Model: (EfficientDet-D6, Image Size 640, Fold 1) Achieved a Valid AP of 0.716.
• Round 1: Trained EfficientDet-D6 for 10 epochs with the training set and hidden test

set (output of ensembling), loading weights from the base checkpoint, resulting in an
AP of 0.7633.

• Round 2: Continued training EfficientDet-D6 for 6 more epochs with the training
set and hidden test set (output of pseudo labeling Round 1), loading weights from the
Round 1 checkpoint, resulting in an AP of 0.7656.

3. Analysis:
The results demonstrate that the EfficientDet-D7 model, particularly with larger image sizes
(1024), consistently achieved higher AP scores across different folds. The use of pseudo
labeling further boosted the performance, as seen in the significant increase in AP from the
base model to the final rounds of pseudo labeling.
The higher AP scores for larger image sizes suggest that the model benefits from more
detailed input, allowing it to better identify and localize wheat spikes. Additionally, the
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pseudo labeling technique’s iterative approach of incorporating pseudo-labeled data helps in
refining the model’s predictions and improving its generalization capability.

5 Conclusion

This project presents a comprehensive approach to improving the accuracy and robustness of wheat
head detection in field images using advanced convolutional neural network (CNN) techniques.
By integrating diverse datasets from the Global Wheat Detection Competition, SPIKE dataset,
and Wheat 2017 dataset, we ensured a broad representation of different growing conditions and
environments. Our methodology included sophisticated data augmentation strategies, such as custom
mosaic augmentation, MixUp, and heavy augmentation, which significantly enhanced the training
data’s diversity and robustness.

We employed EfficientDet and Faster R-CNN FPN models, leveraging their strengths in object
detection tasks. The training process was meticulously designed, incorporating five-fold stratified
cross-validation, mixed precision training with NVIDIA Apex, and iterative pseudo labeling. These
techniques collectively contributed to the model’s improved performance and generalization capabili-
ties. The use of a cosine annealing scheduler for learning rate adjustment and the warm-up phase
further stabilized the training process.

Our results demonstrated that the EfficientDet-D7 model, especially when trained with larger image
sizes, consistently achieved higher average precision (AP) scores across different folds. The pseudo
labeling technique proved to be particularly effective, progressively refining the model’s predictions
and enhancing its generalization to unseen data.

Overall, this research provides a robust and reliable framework for wheat head detection, which can
significantly aid farmers in assessing crop health and making informed management decisions. The
successful implementation of these techniques in real-world agricultural applications has the potential
to improve the quality and availability of wheat-based products, ultimately benefiting the global
food supply chain. Future work could explore further enhancements in model architectures and the
integration of additional data sources to continue advancing the field of agricultural image analysis.

6 Implementation

The development of our object detection system leverages established methodologies combined with
novel approaches tailored for the scope of this graduate-level project. Central to our implementation
are the Fast R-CNN with Feature Pyramid Networks (FPNs) [2] and the EfficientDet [5] architectures,
adapted from their respective seminal papers. These frameworks were chosen for their robust
performance in handling diverse and challenging datasets.

Our implementation extended beyond the mere adoption of pre-existing architectures by incorporating
a customized training regimen. Notably, we implemented a five-fold cross-validation strategy to
ensure the generalizability and robustness of our models across different data splits. This method is
critical in assessing the performance variability and in preventing overfitting, thus ensuring that our
findings are statistically reliable.

Further enhancing our model’s capability, we integrated techniques such as Pseudo Labeling [13]
to utilize unlabeled data effectively, thereby semi-supervised learning enlarges our training dataset
and improves the model’s accuracy and robustness. This approach was inspired by successful
implementations in recent competitions, where it has shown significant improvements in model
performance by leveraging unlabeled data.

Additionally, our models were initialized with weights from pre-trained networks available within
the EfficientDet and Fast R-CNN repositories, providing a strong starting point for learning and
significantly reducing the training time. Such pre-training is essential in deep learning practices to
achieve high performance, especially when labeled data is scarce.

Data preprocessing played a pivotal role in our pipeline, adopting proven techniques from other
competitors in the field. This included advanced image augmentation strategies like mixup, mosaic
blending, and geometric transformations [16] to increase the diversity of training examples and
simulate various object scales and orientations, thereby enhancing the detection robustness.
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Each component of our system was meticulously developed and integrated, ensuring seamless
functionality and optimal performance. The combination of robust model architectures with advanced
training and preprocessing techniques outlines our commitment to adopting advanced practices while
pushing the boundaries with innovative data augmentation and training strategies.

References
[1] Pranav Adarsh, Pratibha Rathi, and Manoj Kumar. Yolo v3-tiny: Object detection and recognition using one

stage improved model. In 2020 6th international conference on advanced computing and communication
systems (ICACCS), pages 687–694. IEEE, 2020.

[2] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. Advances in neural information processing systems, 28, 2015.

[3] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[4] Roman Solovyev, Weimin Wang, and Tatiana Gabruseva. Weighted boxes fusion: Ensembling boxes from
different object detection models. Image and Vision Computing, 107:104117, 2021.

[5] Y Lecun, L Bottou, GB Orr, and KR Müller. Efficient backprop. lncs, 1998.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[7] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017.

[8] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and accuracy
of object detection. arXiv preprint arXiv:2004.10934, 2020.

[9] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

[10] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1–48, 2019.

[11] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2117–2125, 2017.

[12] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10781–10790,
2020.

[13] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised learning
with deep generative models. Advances in neural information processing systems, 27, 2014.

[14] Etienne David, Simon Madec, Pouria Sadeghi-Tehran, Helge Aasen, Bangyou Zheng, Shouyang Liu,
Norbert Kirchgessner, Goro Ishikawa, Koichi Nagasawa, Minhajul A Badhon, et al. Global wheat head
detection (gwhd) dataset: A large and diverse dataset of high-resolution rgb-labelled images to develop
and benchmark wheat head detection methods. Plant Phenomics, 2020.

[15] Michael P Pound, Jonathan A Atkinson, Darren M Wells, Tony P Pridmore, and Andrew P French. Deep
learning for multi-task plant phenotyping. In Proceedings of the IEEE International Conference on
Computer Vision Workshops, pages 2055–2063, 2017.

[16] Etta D Pisano, Shuquan Zong, Bradley M Hemminger, Marla DeLuca, R Eugene Johnston, Keith Muller,
M Patricia Braeuning, and Stephen M Pizer. Contrast limited adaptive histogram equalization image
processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital
imaging, 11:193–200, 1998.

12


	Introduction
	Related Work
	Cosine Annealing: Concept and Principles
	Weighted-Boxes-Fusion (WBF): Enhancing Object Detection Accuracy
	Stochastic Gradient Descent (SGD) and Adam Optimizers
	NVIDIA Apex: High-Performance Training for Deep Learning Models

	Method
	Data Processing
	Custom Mosaic Augmentation:
	MixUp:
	Heavy Augmentation:

	Models
	Faster R-CNN with FPN:
	EfficientDet:

	Pseudo Labeling

	Experiments
	Dataset description and data format
	Experimental Flow
	Data Preprocessing:
	External Data Integration:
	Model Training:
	Pseudo Labeling:
	Model Ensemble and Evaluation:

	Results
	Evaluation Metrics:
	Performance and Analysis:


	Conclusion
	Implementation

