
Cogs209/ 2024Spring/ Revised Report Group 22

Exploration of Effective Models for Detecting Hate Speech on Twitter

Lead Author: Xiang Gao; Co-authors: Mengkun Gao, Xiangwei Huang, Yiwei Zhang

1 Cover Letter
Summary of Feedback and Substantive Modifications

Based on Three Groups’ Reviews of the Project Titled ”Ex-
ploring Effective Models for Detecting Hate Speech on
Twitter”:

Improving Dataset and Sample Size: One of the primary
criticisms was the imbalance in our dataset, with significantly
more tweets containing offensive language compared to those
containing hate speech. This imbalance skewed model per-
formance, particularly affecting the recall rate for hate speech
detection by the logistic regression model. To address this
issue, we recalculated the class weights within our models,
ensuring that higher weights were assigned to the underrepre-
sented hate speech instances. This adjustment, implemented
by passing the class weight parameter in Keras, ensured
the classifier focused more on the minority hate speech
class, enhancing the model’s fairness and accuracy. This
modification also partially mitigates the overfitting concern
raised by Jemin Vagadia’s group. Model Exploration and
Performance Evaluation: Zhenyu Du’s group suggested
that our model exploration was insufficient. In response,
we expanded our model exploration to include BERT [1]
combined with CNN and BERT combined with MLP. These
additional models leverage BERT’s contextual understanding
capabilities alongside the classification strengths of CNN
and MLP. This enhancement aims to improve our ability to
accurately detect hate speech. During experiments, we used
various evaluation metrics, including precision, recall, and
F1 scores (both micro and macro). While Vishesh Mun-
jal’s group recommended incorporating the AUC-ROC [2]
metric for a more comprehensive evaluation, we opted to
use confusion matrices to demonstrate performance across
different classes. We believe that our chosen metrics ade-
quately cover all effective evaluations, thus we did not adopt
the AUC-ROC recommendation. Data Preprocessing and
Visualization Analysis: In response to Vishesh Munjal’s
group’s suggestions, we provided detailed steps and infor-
mation on data preprocessing in the methodology section,
ensuring the model was trained on clean and standardized
data. Regarding their suggestions on hyperparameter tuning,
we included a range of tested values to aid in understanding
the model optimization process in the appenidx. Additionally,
while they suggested exploring extra features, we thoroughly
explored all effective features available in our dataset, and
the additional features they mentioned were not present in
our data. For Zhenyu Du’s group’s suggestions, we enhanced
model interpretability by incorporating confusion matrices
and provided more detailed error analysis, including specific
examples of misclassified tweets and potential reasons.

We believe these changes significantly enhance the robust-
ness and effectiveness of our hate speech detection model.
We appreciate the valuable insights provided by the three

groups and hope these revisions meet their expectations.

2 Introduction and Hypotheses
2.1 Introduction

In today’s interconnected digital landscape, social media
platforms like Twitter play a pivotal role in shaping public
discourse. These platforms, however, are not just channels
for communication and information sharing; they also serve
as arenas where harmful content, including hate speech, can
proliferate. Hate speech, as defined in various legal and
academic contexts, typically refers to language that targets or
demeans a group based on attributes such as race, ethnicity,
gender, or sexual orientation. This type of speech can incite
violence, exacerbate social tensions, and harm individuals or
communities. Unlike hate speech, offensive language, while
potentially hurtful and crude, does not necessarily carry the
same intent or capacity for significant social harm.

Given these distinctions, it is crucial for social media
companies to effectively differentiate between hate speech,
mere offensive language, and benign communications. This
differentiation is not merely academic but has practical im-
plications in content moderation, shaping user experience,
and aligning with legal standards across different jurisdic-
tions. The challenge, however, lies in the subtle nuances
of language use, where the same word or phrase may be
innocuous in one context but harmful in another.

Due to the vast volume of data, manually distinguishing
these three categories of words is not only inefficient but also
challenging to achieve with high accuracy. Our objective
is to develop a classifier that not only operates at a higher
speed but also surpasses human performance in capturing
missing information and conducting a more comprehensive
analysis of the data. This approach aims to enhance both the
efficiency and accuracy of the classification process.

Additionally, we specifically employed methods combin-
ing BERT with CNN and MLP to improve our detection
accuracy and address the issues of data imbalance and in-
sufficient sample size. These advanced model combinations
leverage BERT’s contextual understanding along with CNN’s
and MLP’s strengths in feature extraction and classification
phase, significantly enhancing our model’s performance in
detecting hate speech. In summary, our experiments follow
the pipeline illustrated in Figure 1.

2.2 Hypotheses and Objectives
Our project aims to develop an automated classification

system capable of accurately categorizing tweets into three
distinct categories:

• Hate Speech: This category includes tweets that contain
language intended to degrade, intimidate, or incite vio-
lence against a group based on protected characteristics.

• Offensive Language: This category captures tweets

– 1 –



Cogs209/ 2024Spring/ Revised Report Group 22

Figure 1: Pipeline

that use explicit or implicit derogatory language that
is likely offensive to many users but does not meet the
criteria of hate speech.

• Neither: Tweets that do not contain hate speech or
offensive language fall into this category.

This distinction is vital for several reasons:

• Legal and Policy Compliance: Many regions have laws
that specifically regulate hate speech, which can carry
significant legal consequences. Social media platforms
must navigate these regulations carefully to avoid legal
liabilities and to enforce their community standards.

• Social Impact: Properly identifying and addressing hate
speech can help mitigate its harmful effects on targeted
groups, promoting a more inclusive and safe online
environment.

• User Experience: Distinguishing between hate speech
and merely offensive content allows platforms to im-
plement more graded and context-sensitive moderation
policies, enhancing user experience without overly cen-
soring speech.

3 Methods
The methodology of our study on automated hate speech

detection on Twitter is designed to address the complex
challenges of classifying tweets into hate speech, offensive
language, and neutral content. We implement a combination
of machine learning techniques and statistical methods to
develop a robust model that can accurately distinguish these
categories, especially the Natural Language Processing, NLP.
The following sections outline the specific computational
and statistical methods used in our research:

3.1 Preprocessing Dataset
3.1.1 Data preprocessing

The data preprocessing phase is critical in our approach
to hate speech detection on Twitter, ensuring the input text
data is accurately prepared for the BERT model. Initially,
we employed a BERT-specific preprocessing model from
TensorFlow Hub [3], which systematically transforms raw

text into numeric token IDs and arranges them into multiple
tensors. This transformation is essential as it aligns with the
input requirements of BERT models, facilitating efficient
and standardized data handling. To illustrate, we began by
extracting text and labels from our dataset, processing a
sample tweet through the preprocessing model. This step
involves converting the text into structured data formats,
including ”input word ids”, ”input mask”, and ”input type -
ids”, each playing a crucial role in the BERT model’s input
structure. The preprocessing model ensures consistency with
BERT’s documented requirements, maintaining integrity and
uniformity across all text inputs.

Post-preprocessing, the structured text data was fed into
the BERT encoder model. The encoder generates two types
of outputs: ”pooled output”, representing the aggregated
sentence embedding, and ”sequence output”, which includes
embeddings for each token in the input sequence. These out-
puts are pivotal for subsequent classification tasks, providing
robust and contextually rich representations of the input text.

Ensuring meticulous adherence to these preprocessing
steps guarantees that our model receives high-quality, stan-
dardized input data, which is vital for achieving reliable and
accurate performance in detecting hate speech. This detailed
preprocessing pipeline not only enhances the reproducibility
of our study but also contributes to the overall robustness of
the model’s performance.

3.1.2 Class Weight

Class weights [4] are an effective technique for addressing
the challenge of imbalanced datasets during model training.
When the distribution of classes in a dataset is skewed, with
some classes being significantly more prevalent than others,
the model tends to develop a bias towards the majority classes.
This bias results in suboptimal performance, particularly for
minority classes, as observed in our previous report. To
combat this issue, class weights are introduced in the loss
function of the model.

By assigning higher weights to the minority classes and
lower weights to the majority classes, class weights ensure
that the model places greater emphasis on correctly predicting

– 2 –



Cogs209/ 2024Spring/ Revised Report Group 22

the less frequent classes. This approach works by penalizing
misclassifications of minority classes more severely than
those of majority classes, thereby encouraging the model
to focus more on accurately identifying instances of the
minority classes. The weighted loss function adjusts the
gradient updates during training, making the model more
sensitive to the minority class examples and reducing the
overall bias towards the majority classes.

Implementing class weights is particularly beneficial in
our context, where the goal is to enhance the detection of
hate speech within a dataset dominated by offensive but
non-hateful language. By integrating class weights into our
training process, we can significantly improve the model’s
performance on underrepresented classes, leading to a more
balanced and fair classification outcome. This method not
only enhances the model’s ability to detect hate speech but
also ensures that the evaluation metrics more accurately
reflect the model’s performance across all classes.

3.2 Enhanced Text Representation Methods
3.2.1 Global Vectors for Word Representation (GloVe) [5]

GloVe is a type of word embedding that uses matrix factor-
ization techniques based on the co-occurrence probabilities
across the whole text corpus to embed words into a geometric
space. This space ideally captures the semantic and syntactic
similarities between words based on their co-occurrence
probabilities.

• Function: GloVe embeddings provide a dense represen-
tation of words where semantically similar words are
mapped to proximate points in the vector space. This
is particularly useful in understanding the context and
subtle nuances in the usage of words, which is crucial
for effectively distinguishing hate speech from offensive
or neutral content.

• Usage: In our study, we utilize pre-trained GloVe
embeddings to convert the text of each tweet into a
fixed-size vector. This vector representation enables
our machine learning algorithms to capture not only the
presence of specific words but also the context provided
by their relationships with other words in the space,
enhancing the accuracy of the subsequent classification.

3.2.2 Term Frequency-Inverse Document Frequency (tf-idf)
[6]

tf-idf is a statistical measure used to evaluate how impor-
tant a word is to a document in a collection or corpus. The
importance increases proportionally to the number of times
a word appears in the document but is offset by the frequency
of the word in the corpus. In the context of hate speech
detection on Twitter:

• Function: tf-idf transforms the raw text data into a
numerical form by reflecting how crucial a word is for
understanding the content of a tweet compared to other
tweets. It helps in distinguishing tweets with common
language from those with specific, unusual terms that
might indicate hate speech.

• Usage: We use tf-idf to vectorize tweets, creating a
feature matrix where each row represents a tweet, and
each column represents a term’s tf-idf score across the
tweet corpus. This numerical representation feeds into
our classification models, assisting them in recognizing
patterns associated with different categories of speech.

By leveraging these text representation methods, our study
constructs a nuanced foundation for the advanced classifica-
tion models discussed in section 2.2. This allows our models
to better differentiate between hate speech, offensive lan-
guage, and neutral content based on the textual characteristics
of tweets.

3.3 Advanced Classification Models
We employ several classification models to evaluate their

performance in distinguishing between the different types of
speech. In addition to traditional machine learning models,
we have incorporated advanced models such as BERT com-
bined with CNN and BERT combined with MLP to enhance
our classification capabilities:

3.3.1 Logistic Regression with Regularization [7], [8]

This model is used for its capability to handle multi-
collinearity and model complexity by penalizing the size of
the coefficients, which helps in avoiding overfitting.

3.3.2 Support Vector Machines (SVMs) [9], [10]

SVMs are critical to our analysis due to their efficacy in
high-dimensional spaces, which is common in text classifica-
tion tasks like ours. To handle non-linear data relationships,
we utilize SVMs with various kernels. The kernels we use
include:

• RBF (Radial Basis Function): This kernel is particu-
larly effective for handling complex, non-linear data
separations.

• Linear: Although named similarly to linear SVMs, in
this context, the linear kernel within a kernel SVM
setting helps in handling non-linear properties of data
in certain scenarios.

• Polynomial: This kernel allows for the modeling of
interactions between features up to a specified degree,
providing flexibility in capturing various data patterns.

These SVM configurations enhance our model’s ability
to accurately classify different speech types by effectively
dealing with both the linear and complex non-linear charac-
teristics of our data.

3.3.3 Random Forest [11]

Random Forest is another model used due to its robust-
ness and excellent performance in classification tasks. By
aggregating the decisions from multiple decision trees, it
reduces the risk of overfitting and enhances the model’s gen-
eralizability. This ensemble method is particularly useful for
its ability to handle large data sets with numerous variables,
making it an ideal choice for our application in hate speech
detection.

– 3 –



Cogs209/ 2024Spring/ Revised Report Group 22

3.3.4 Long Short-Term Memory Networks (LSTMs) [12]

LSTMs are a type of recurrent neural network (RNN)
ideal for analyzing sequence data such as text. LSTMs are
particularly suited for tasks where understanding the context
and order of words is crucial. They are explored in our
study to leverage their capability in capturing long-term
dependencies and intricate patterns in tweet data, which
is essential for recognizing contextual nuances and subtle
indications of hate speech within textual streams.

By incorporating these advanced classification models,
our study aims to robustly distinguish between hate speech,
offensive language, and neutral content on Twitter, leveraging
their distinct capabilities to improve prediction accuracy and
reliability.

3.3.5 BERT [1] + CNN [13]

BERT (Bidirectional Encoder Representations from Trans-
formers) is a state-of-the-art language representation model
that captures deep contextual dependencies in text by pro-
cessing it bidirectionally. By integrating BERT with CNN
(Convolutional Neural Networks), we leverage BERT’s con-
textual understanding with CNN’s ability to extract local
patterns and features. This combination involves passing
BERT’s output embeddings through convolutional layers,
followed by pooling layers to highlight salient features, and
finally into a fully connected layer for classification. This
hybrid approach improves the detection of hate speech by
capturing both broad contextual nuances and specific local
patterns, resulting in a more robust model.

3.3.6 BERT + MLP [14]

BERT provides rich contextual embeddings crucial for
understanding nuanced meanings in text. By combining
BERT with an MLP (Multi-Layer Perceptron), we utilize
these embeddings as high-quality input for the MLP’s layers,
which apply non-linear transformations to learn complex
decision boundaries. The implementation involves feed-
ing BERT’s embeddings into fully connected layers of the
MLP, culminating in a classification output. This approach
enhances our model’s ability to classify tweets accurately
by leveraging deep contextual understanding and modeling
complex relationships, leading to significant improvements
in performance metrics like precision, recall, and F1-score.

These hybrid models demonstrate substantial advance-
ments in the automated detection of hate speech, contributing
to more effective and nuanced monitoring systems.

3.4 Model Evaluation and Validation
To ensure the robustness and reliability of our models, we

conduct extensive testing and validation:

3.4.1 5-Fold Cross-Validation [15]

We utilize 5-Fold Cross-Validation to assess the robustness
and reliability of our models across different subsets of
the data. This technique helps ensure that our findings
are not biased by any particular partition of the dataset.
More importantly, 5-Fold Cross-Validation is instrumental
in comparing various hyperparameter combinations. By

systematically applying different sets of hyperparameters
across the folds, we can evaluate their impact on model
performance. This process enables us to identify the most
optimal combination of hyperparameters, which is crucial
for enhancing the accuracy and efficiency of our models
in detecting hate speech on Twitter. This method not only
validates the generalizability of our models but also aids in
fine-tuning them to achieve the best possible performance.

3.4.2 Performance Metrics

In our study, models are evaluated based on several key
performance metrics: precision, recall, and the F1-score.
These metrics help measure the accuracy of the models and
their ability to minimize false positives (incorrectly labeling
non-hate speech as hate speech) and false negatives (failing
to identify actual hate speech). Special attention is given to
the precision-recall trade-off, which is crucial in applications
like hate speech detection, where both over-prediction and
under-prediction can have serious social implications.

• F1-Score [16]: The F1-score is a harmonic mean of pre-
cision and recall, providing a single score that balances
both the concerns of precision and recall in one number.
It is particularly useful when the costs of false positives
and false negatives are roughly equivalent. We mainly
use two specific kinds of F1-Score.

• Micro F1-Score: Micro F1-score aggregates the con-
tributions of all classes to compute the average score.
This is calculated by summing up the individual true
positives, false positives, and false negatives of the
system for different classes and then computing the
precision, recall, and F1-score using these sums. In our
study, micro F1 is especially significant as it reflects
the overall effectiveness of the model across all classes,
making it a robust indicator of performance in the con-
text of Twitter hate speech detection. We use micro F1
as our primary metric for assessing the accuracy of our
models.

• Macro F1-Score: In contrast, the macro F1-score cal-
culates the F1-score independently for each class but
then takes the average, which treats all classes equally
regardless of their frequency. This metric is useful for
understanding how the model performs across different
categories but can be misleading if the dataset is imbal-
anced, as it gives equal weight to the performance on
rare and common classes.

By employing both micro and macro F1-scores, we can
gain comprehensive insights into the model’s performance
across individual classes as well as the system’s overall
accuracy. This dual approach allows us to address the
complexity of classifying tweets into hate speech, offensive
language, and neutral content, ensuring that our models are
not only accurate but also fair and balanced across different
types of content.

3.4.3 Misclassification Analysis and Feature Impact

We analyze the rates of misclassification and the impact of
different features on the model’s predictions. This analysis

– 4 –



Cogs209/ 2024Spring/ Revised Report Group 22

helps in understanding which features are most predictive of
hate speech and offensive language, and where the models
may be making errors.

4 Results
4.1 Model Comparison

As discussed in Section 2, our study explores two different
word embedding methods: sparse embedding using tf-idf
and dense embedding with GloVe. Besides, we explored
six machine learning models for tackling the task of hate
speech detection, including logistic regression, Kernel SVM,
random forest, LSTM combined with an embedding layer,
BERT-MLP, and BERT-CNN. Additionally, for each method,
we examined the model both with and without class weights
to address the issue of imbalance. After conducting 5-fold
cross-validation on the training set to select hyperparameters,
we found the optimal parameters for each of the four models
detailed in Appendix A.

Using the optimal hyperparameters detailed in Table 3,
we evaluated the performance of logistic regression, Kernel
SVM, and random forest models with tf-idf and GloVe word
embeddings. As illustrated in Table 1, tf-idf consistently
outperformed GloVe across all models, achieving higher
micro-F1 and macro-F1 scores. This indicates that tf-idf
word representation is more effective for hate speech detec-
tion. A potential reason for GloVe’s underperformance is its
pre-training on general datasets rather than on specific hate
speech data, limiting its relevance and effectiveness for this
task. Consequently, we will employ tf-idf word embedding
for logistic regression, Kernel SVM, and random forest in
subsequent experiments.

Furthermore, as shown in Table 2, we evaluated all six
methods mentioned above with and without class weights to
identify the most suitable model for this task. Our results
indicate that among the models tested, BERT-CNN exhibited
the highest micro-F1 score, demonstrating superior overall
performance in detecting hate speech. Conversely, logistic
regression with class weight achieved the best macro-F1
score, reflecting its effectiveness across all categories on
average. Therefore, if our primary goal is to identify potential
prohibited content such as hate speech and offensive language,
BERT-CNN is the optimal choice due to its highest micro-F1
score. However, for more precise classification, logistic
regression with class weight should be considered.

Additionally, we found that with class weights, the micro-
F1 scores of machine learning methods like logistic re-
gression, SVM, and random forest remained close to those
without class weights, while their macro-F1 scores improved.
However, for neural network methods like LSTM, BERT-
MLP, and BERT-CNN, the micro-F1 scores significantly
decreased. Consequently, in the following section, we will
visualize these methods with class weights using confusion
matrices and analyze the results.

4.2 Visualization
In this section, we first display the class distribution

for the training and testing sets in Figure 2. As shown,
the distribution is imbalanced, with numerous examples of
offensive language but relatively few instances of hate speech

and neither category. Therefore, we propose assessing the
effectiveness of using class weights to mitigate the data
imbalance problem.

In Figure 3, we present a detailed visualization of the con-
fusion matrices for the six models evaluated without class
weights. Similarly, in Figure 4, we display the confusion
matrices for the same models with class weights. Each con-
fusion matrix presents the classification performance across
three categories of text: hate speech, offensive language,
and neither. Besides, each number in the confusion matrix
represents the proportion of total predictions for each actual
class that were classified as a specific class by the model.
This layout allows us to assess not only the overall accuracy
of each model but also its ability to distinguish between these
categories. As a result, we can gain insights into the specific
strengths and weaknesses of the models in differentiating
between hate speech, offensive language, and neither.

5 Discussion
Based on Figure 3, our models demonstrate robust per-

formance in identifying offensive language, with all models
correctly identifying over 95% of such texts. Furthermore,
they perform well in distinguishing text that is neither of-
fensive nor hateful, with logistic regression, Kernel SVM,
BERT-MLP, and BERT-CNN models correctly identifying
around 90% of these instances, and random forest and LSTM
models achieving about 80% accuracy.

However, a significant challenge remains in differentiating
hate speech from offensive language. The best-performing lo-
gistic regression model only correctly identifies 31% of hate
speech instances, with the majority misclassified as offen-
sive language. Despite implementing pre-trained language
models like BERT, the accuracy for the hate speech class
remains low. These advanced models primarily contribute
to more precise classification of offensive language, which
is the majority class. Based on Figure 2, this issue largely
stems from the data imbalance—offensive language occurs
more frequently than hate speech in the dataset, impacting
the models’ training and performance.

After implementing class weights in all our models, we
observed several notable findings. Compared to models
without class weights, all six models showed improved
accuracy in the minority class. For instance, the accuracy
for the hate speech class increased to over 50% for logistic
regression and LSTM, and models using BERT improved
to exceeding 70%. However, these improvements came at
the cost of decreased accuracy in the offensive language
class. The more complex the model, the greater the negative
impact on this majority class. Specifically, logistic regression
accuracy dropped by 4%, LSTM by 9%, BERT-MLP by
13%, and BERT-CNN by 21%. One potential reason for
this trend is that in more complex models, increasing the
weights of the minority class may exacerbate overfitting
issues more significantly than in simpler models. As a result,
there is a trade-off between model complexity and overall
performance. While class weights can help complex models
generalize better to the minority class, they significantly
impact performance on the majority class.

Upon deeper analysis of the data, we discovered that the

– 5 –



Cogs209/ 2024Spring/ Revised Report Group 22

Figure 2: Class Distribution

Method Embedding Micro-F1 score Macro-F1 score
Logistic Regression tf-idf 0.9011 0.7275

GloVe 0.8418 0.5470
Kernel SVM tf-idf 0.9052 0.7060

GloVe 0.8465 0.5270
Random Forest tf-idf 0.8899 0.6501

GloVe 0.8235 0.4704

Table 1: Micro-F1 score and Macro-F1 score comparison for different word embeddings

nuanced use of language on social media poses additional
challenges to our classification efforts. For example, tweets
containing explicit racial or homophobic slurs, such as
”@JuanYeez shut yo beaner ass up sp*c and hop your f*ggot
ass back across the border little n*gga” or ”@eBeZa: Stupid
f*cking n*gger LeBron. You flipping jungle bunny monkey
f*ggot,” are straightforwardly categorized as hate speech.
Conversely, a tweet like ”Why no boycott of racist ’redskins’?
#Redskins #ChangeTheName,” which uses a racial slur but
in a context advocating against racism, underscores the
complexity of text classification. Complications also arise
from tweets that utilize derogatory language in culturally
specific or casual contexts, such as ”@SmogBaby: These
h*es be l*yin to all of us n*ggas” and lyrics from rap
songs like ”these hoes ain’t loyal.” These cases highlight
the necessity for models to meticulously navigate cultural
and contextual layers to accurately classify language. As
a result, misclassifications are often due to the presence of
specific keywords that can be misleading without proper
contextual analysis, as seen in the tweet ”When you realize
how curiosity is a b*tch #CuriosityKilledMe.” Additionally,
infrequent forms of hate speech, such as ”Every slant in
#LA should be deported. Those scum have no right to be
here. Chinatown should be bulldozed,” present detection
challenges due to their rarity.

Moreover, our results in Table 1 indicate that dense word
embeddings are not always superior to sparse embeddings,
especially when applied to topics distinct from the original
training data. Shallow neural networks, like a one-layer
LSTM, often do not outperform traditional machine learning

methods. Given their complexity, LSTMs may lead to over-
fitting, particularly in data-scarce categories like hate speech,
where logistic regression might offer better generalization.

Moving forward, we propose several potential improve-
ments to refine our approach and enhance the efficacy of our
models in detecting hate speech:

1. Exploring Alternative Method to Balance the
Dataset:

• Acquisition of More Hate Speech Samples: By
collecting a larger corpus of hate speech examples,
we can provide our models with a richer and more
diverse set of training data, enhancing their ability
to recognize such instances.

• Bootstrapping Techniques: Utilizing bootstrap-
ping to artificially augment the number of hate
speech instances in our dataset could help mitigate
the current imbalance, allowing for more effective
training and generalization.

2. Enhancing Word Embedding Techniques:
• Hybrid tf-idf and GloVe Embedding: By inte-

grating the specificity of tf-idf, which emphasizes
unique terms in documents, with the dense repre-
sentation capabilities of GloVe, we aim to create
a hybrid embedding that captures both the impor-
tance of specific terms and the contextual richness
of the text. This approach involves adjusting the
embeddings based on their tf-idf scores, which
could lead to a more nuanced understanding of

– 6 –



Cogs209/ 2024Spring/ Revised Report Group 22

(a) Logistic Regression (b) Kernel SVM

(c) Random Forest (d) LSTM

(e) BERT-MLP (f) BERT-CNN

Figure 3: Confusion Matrices for all six methods without class weight

– 7 –



Cogs209/ 2024Spring/ Revised Report Group 22

(a) Logistic Regression (b) Kernel SVM

(c) Random Forest (d) LSTM

(e) BERT-MLP (f) BERT-CNN

Figure 4: Confusion Matrices for all six methods with class weight

– 8 –



Cogs209/ 2024Spring/ Revised Report Group 22

Method Class weight Micro-F1 score Macro-F1 score
Logistic Regression w/o 0.9011 0.7275

w/ 0.8913 0.7548
Kernel SVM w/o 0.9052 0.7060

w/ 0.9020 0.7066
Random Forest w/o 0.8899 0.6501

w/ 0.8931 0.6645
LSTM w/o 0.8844 0.6314

w/ 0.8487 0.7024
BERT-MLP w/o 0.9052 0.7330

w/ 0.8374 0.7204
BERT-CNN w/o 0.9108 0.7304

w/ 0.7898 0.6867

Table 2: Comparison of Micro-F1 and Macro-F1 scores for various methods (w/ indicates methods with class weight, w/o indicates
methods without class weight)

the textual context and its semantic nuances.

By implementing these enhancements, we aim to further
improve the precision of our hate speech detection models.
These advancements will not only aid in better identifying and
classifying hate speech but also in understanding the broader
context within which potentially harmful language is used,
thus contributing to more effective and nuanced automated
systems for monitoring and addressing hate speech on social
media platforms.

References
[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:

Pre-training of deep bidirectional transformers for language
understanding,” arXiv preprint arXiv:1810.04805, 2018.

[2] J. A. Hanley and B. J. McNeil, “The meaning and use of the
area under a receiver operating characteristic (roc) curve.,”
Radiology, vol. 143, no. 1, pp. 29–36, 1982.

[3] A. Puff, S. Gross, M. Chrzan, et al., “Tensorflow hub:
A library for reusable machine learning modules,” arXiv
preprint arXiv:1705.01066, 2018.

[4] H. He and E. A. Garcia, “Learning from imbalanced data,”
IEEE Transactions on knowledge and data engineering,
vol. 21, no. 9, pp. 1263–1284, 2009.

[5] J. Pennington, R. Socher, and C. D. Manning, “Glove:
Global vectors for word representation,” in Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP), 2014, pp. 1532–1543.

[6] K. Sparck Jones, “A statistical interpretation of term speci-
ficity and its application in retrieval,” Journal of documen-
tation, vol. 28, no. 1, pp. 11–21, 1972.

[7] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society Series B:
Statistical Methodology, vol. 58, no. 1, pp. 267–288, 1996.

[8] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased
estimation for nonorthogonal problems,” Technometrics,
vol. 12, no. 1, pp. 55–67, 1970.

[9] C. Cortes and V. Vapnik, “Support-vector networks,” Ma-
chine learning, vol. 20, pp. 273–297, 1995.

[10] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training
algorithm for optimal margin classifiers,” in Proceedings of
the fifth annual workshop on Computational learning theory,
1992, pp. 144–152.

[11] L. Breiman, “Random forests,” Machine learning, vol. 45,
pp. 5–32, 2001.

[12] A. Graves and A. Graves, “Long short-term memory,” Su-
pervised sequence labelling with recurrent neural networks,
pp. 37–45, 2012.

[13] Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropaga-
tion applied to handwritten zip code recognition,” Neural
computation, vol. 1, no. 4, pp. 541–551, 1989.

[14] F. Rosenblatt, “The perceptron: A probabilistic model for
information storage and organization in the brain.,” Psycho-
logical review, vol. 65, no. 6, p. 386, 1958.

[15] B. Efron, “Estimating the error rate of a prediction rule:
Improvement on cross-validation,” Journal of the American
statistical association, vol. 78, no. 382, pp. 316–331, 1983.

[16] A. Roshdi and A. Roohparvar, “Information retrieval tech-
niques and applications,” International Journal of Com-
puter Networks and Communications Security, vol. 3, no. 9,
pp. 373–377, 2015.

Appendix
A Hyperparameter Results

The table below demonstrates the hyperparameter selec-
tion results for logistic regression, Kernel SVM, random
forest, and LSTM models used in hate speech detection. Due
to the large size of the BERT model, which makes it difficult
to train on GPUs with limited memory, we followed the
hyperparameter recommendations provided in the original
paper to do the hate speech detection task [1].

– 9 –



Cogs209/ 2024Spring/ Revised Report Group 22

Model Hyperparameter Range Value

Logistic Regression C (regularization strength) [0.1,10] 5
Penalty [’𝑙1’,’𝑙2’] ’𝑙1’

Kernel SVM C (regularization strength) [0.1,10] 1
Gamma (kernel coefficient) [0.1,1] 1
Kernel [’linear’, ‘poly’, ‘rbf’] ’linear’

Random Forest n estimators [100,300] 300
max depth [’None’, 10, 20] ’None’

LSTM Dropout rate [0.1,0.5] 0.3
Embedding dimension [100,300] 200

Table 3: Best hyperparameters for different models

– 10 –


	Cover Letter
	Introduction and Hypotheses
	Introduction
	Hypotheses and Objectives

	Methods
	Preprocessing Dataset
	Data preprocessing
	Class Weight

	Enhanced Text Representation Methods
	Global Vectors for Word Representation (GloVe) 1
	Term Frequency-Inverse Document Frequency (tf-idf) 2

	Advanced Classification Models
	Logistic Regression with Regularization 3, 4
	Support Vector Machines (SVMs) 5, 6
	Random Forest 7
	Long Short-Term Memory Networks (LSTMs) 8
	BERT devlin2018bert + CNN lecun1989backpropagation
	BERT + MLP rosenblatt1958perceptron

	Model Evaluation and Validation
	5-Fold Cross-Validation 9
	Performance Metrics
	Misclassification Analysis and Feature Impact


	Results
	Model Comparison
	Visualization

	Discussion
	Appendix
	Hyperparameter Results

